Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
Authors
Abstract:
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA). Results based on comparative studies between four methods based on ANN and by considering the several conditions for the effective parameters in ANN show that, the generalized regression method is the best method for predicting the availability. Furthermore, results of the EWMA and three mentioned TSM are also show the better performance of MA model for predicting the availability values in future periods.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Vehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
full textmodeling and prediction of bread waste using time series models and artificial neural networks (ann)
this paper presents the application of multivariate time series model (ardl) to investigate factors affecting bread waste and to explore the relationships among shortrun, longrun and error correction coefficient and the independent variables over the period 1978-2006. results reveal that gross national product and urbanization have positive effects on bread waste in the long term, while the bre...
full textEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
full textPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
full textPrediction of Time of Capillary Rise in Porous Media Using Artificial Neural Network (ANN)
An Artificial Neural Network (ANN) was used to analyse the capillary rise in porous media. Wetting experiments were performed with fifteen liquids and fifteen different powders. The liquids covered a wide range of surface tension ( 15.45-71.99 mJ/m2 ) and viscosity (0.25-21 mPa.s). The powders also provided an acceptable range of particle size (0.012-45 μm) and surface free...
full textMy Resources
Journal title
volume 29 issue 1
pages 79- 90
publication date 2018-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023